Opportunistic omnivory impairs our ability to predict invasive species impacts from functional response comparisons

Comparing the relationship between resource use and resource availability (i.e. the functional response, FR) between two predators can provide useful insights on their relative predatory impacts. For instance in invasion ecology, an increase in the predation pressure on local prey populations can be predicted from a significant difference in FR revealing a higher FR for the invasive predator compared to the native trophic analogue it may replace. In traditional FR experiments, the focal prey species is the only source of food. This may lead to misinterpretations with opportunistic omnivores that are able to cope with different resource availabilities in their natural environment, and whose predation rate may therefore be modulated by the presence of alternative resources. To address this question, we compared the FR of two freshwater gammarid species known to behave as opportunistic omnivores: the invasive “killer shrimp” Dikerogammarus villosus and the native Gammarus pulex, in a treatment with a focal prey species as the only food source (the water flea Daphnia magna) and in a treatment with the focal prey and an alternative food source (Carpinus betulus leaves). D. villosus showed a significantly higher FR than G. pulex with water fleas only and providing leaf litter suppressed this difference. The predatory impact of D. villosus might therefore be modulated by the relative availability of live prey compared to the alternative food sources. Increasing the realism of FR experiments through the inclusion of abundant and easily accessible alternative resources, like leaf litter for benthic invertebrates, should refine the predictions made from FR comparisons.

Références

Title
Opportunistic omnivory impairs our ability to predict invasive species impacts from functional response comparisons
Publication Type
Journal Article
Year of Publication
2018
Journal
Biological Invasions
Volume
20
Pagination
1307–1319
Date Published
may
ISSN
1573-1464
Keywords
CNRS, PLANAQUA
Submitted on 21 October 2021