Concentrations and fluxes of isoprene and oxygenated {VOCs} at a {French} {Mediterranean} oak forest

{\textless}p{\textgreater}{\textless}strong{\textgreater}Abstract.{\textless}/strong{\textgreater} The CANOPEE project aims to better understand the biosphere–atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O$_{\textrm{3}}$HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, \textit{Quercus pubescens} Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (O$_{\textrm{x}}$VOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O$_{\textrm{3}}$HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mg m$^{\textrm{−2}}$ h$^{\textrm{1}}$. Net isoprene normalized flux (at 30 °C, 1000 μmol quanta m$^{\textrm{−2}}$ s$^{\textrm{−1}}$) was estimated at 7.4 mg m$^{\textrm{−2}}$ h$^{\textrm{−1}}$. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mg m$^{\textrm{−2}}$ h$^{\textrm{−1}}$, whereas flux values for monoterpenes and others O$_{\textrm{x}}$VOC such as acetone and acetaldehyde were below the detection limit. {\textless}br{\textgreater}{\textless}br{\textgreater} The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings proposing weak production yields of MVK and MACR, in remote forest regions where the NO$_{\textrm{x}}$ concentrations are low. In-canopy chemical oxidation of isoprene was found to be weak and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy.{\textless}/p{\textgreater}

Références

Title
Concentrations and fluxes of isoprene and oxygenated {VOCs} at a {French} {Mediterranean} oak forest
Publication Type
Journal Article
Year of Publication
2014
Journal
Atmospheric Chemistry and Physics
Volume
14
Pagination
10085–10102
Date Published
sep
ISSN
1680-7316
Keywords
CNRS, FORET O3HP
Submitted on 21 October 2021